3,675 research outputs found

    Casimir Energies and Pressures for δ\delta-function Potentials

    Full text link
    The Casimir energies and pressures for a massless scalar field associated with δ\delta-function potentials in 1+1 and 3+1 dimensions are calculated. For parallel plane surfaces, the results are finite, coincide with the pressures associated with Dirichlet planes in the limit of strong coupling, and for weak coupling do not possess a power-series expansion in 1+1 dimension. The relation between Casimir energies and Casimir pressures is clarified,and the former are shown to involve surface terms. The Casimir energy for a δ\delta-function spherical shell in 3+1 dimensions has an expression that reduces to the familiar result for a Dirichlet shell in the strong-coupling limit. However, the Casimir energy for finite coupling possesses a logarithmic divergence first appearing in third order in the weak-coupling expansion, which seems unremovable. The corresponding energies and pressures for a derivative of a δ\delta-function potential for the same spherical geometry generalizes the TM contributions of electrodynamics. Cancellation of divergences can occur between the TE (δ\delta-function) and TM (derivative of δ\delta-function) Casimir energies. These results clarify recent discussions in the literature.Comment: 16 pages, 1 eps figure, uses REVTeX

    The Bjorken Sum Rule in the Analytic Approach to Perturbative QCD

    Get PDF
    Results of applying analytic perturbation theory (APT) to the Bjorken sum rule are presented. We study the third-order QCD correction within the analytic approach and investigate its renormalization scheme dependence. We demonstrate that, in the framework of the method, theoretical predictions of the Bjorken sum rule are, practically, scheme independent for the entire interval of momentum transfer.Comment: 12 pages, 3 eps figures, uses elsart.cl

    Motion of vortices in type II superconductors

    Get PDF
    The methods of formal asymptotics are used to examine the behaviour of a system of curvilinear vortices in a type II superconductor as the thickness of the vortex cores tends to zero. The vortices then appear as singularities in the field equation and are analagous to line vortices in inviscid hydrodynamics. A local analysis near each vortex core gives an equation of motion governing the evolution of these singularities

    Remark on the perturbative component of inclusive τ\tau-decay

    Full text link
    In the context of the inclusive τ\tau-decay, we analyze various forms of perturbative expansions which have appeared as modifications of the original perturbative series. We argue that analytic perturbation theory, which combines renormalization-group invariance and Q2Q^2-analyticity, has significant merits favoring its use to describe the perturbative component of τ\tau-decay.Comment: 5 pages, ReVTEX, 2 eps figures. Revised paper includes clarifying remarks and corrected references. To be published in Phys. Rev.

    Accretion disks around binary black holes of unequal mass: GRMHD simulations of postdecoupling and merger

    Get PDF
    We report results from simulations in general relativity of magnetized disks accreting onto merging black hole binaries, starting from relaxed disk initial data. The simulations feature an effective, rapid radiative cooling scheme as a limiting case of future treatments with radiative transfer. Here we evolve the systems after binary-disk decoupling through inspiral and merger, and analyze the dependence on the binary mass ratio with qmbh/MBH=1,1/2,q\equiv m_{\rm bh}/M_{\rm BH}=1,1/2, and 1/41/4. We find that the luminosity associated with local cooling is larger than the luminosity associated with matter kinetic outflows, while the electromagnetic (Poynting) luminosity associated with bulk transport of magnetic field energy is the smallest. The cooling luminosity around merger is only marginally smaller than that of a single, non-spinning black hole. Incipient jets are launched independently of the mass ratio, while the same initial disk accreting on a single non-spinning black hole does not lead to a jet, as expected. For all mass ratios we see a transient behavior in the collimated, magnetized outflows lasting 25(M/108M)days2-5 ( M/10^8M_\odot ) \rm days after merger: the outflows become increasingly magnetically dominated and accelerated to higher velocities, boosting the Poynting luminosity. These sudden changes can alter the electromagnetic emission across the jet and potentially help distinguish mergers of black holes in AGNs from single accreting black holes based on jet morphology alone.Comment: 15 pages, 6 figures, matches published versio
    corecore